High Pressure Mercury Injection Capillary Pressure:
unveiling its value by scrutinising and analysing disparate data sets into a single, meaningful analysis

Izaskun Zubizarreta
Core Analysis Manager – Principal Consultant
Lloyd’s Register
Agenda

• Background
• Data Evaluation
• Data Interpretation
• Conclusions
Capillary Pressure Curves

Reservoir to Lab:

\[Sw = f(H) \]

\[H = f(Pc) \]

\[Sw = f(Pc) \]

Lab to Reservoir

\[H = \frac{Pc}{\Delta \rho \cdot g} \]

Pc (Res. Conditions) vs. Sw

Pc (Lab Conditions) vs. Sw
High Pressure Mercury Injection (HPMI)

MICP used extensively for Pc tests design, Sw-Height, rock quality and typing

- Max. sample size is 1” dia. x 1” length plug
- Relatively cheap and fast (several samples per day)
- Uses clean-dry samples
- Mercury does not wet most substances
- Very high pressures up to 60,000 psi are achieved (0.001 microns pores)
- It does not spontaneously penetrate pores by capillary action
- It must be forced into the pores by the application of external pressure
- HPMI is the progressive intrusion of mercury into a porous structure under extremely controlled pressures
- Hg volumes are not measured directly, but calculated based on a change of capacitance as Hg leaves the stem of the penetrometer (a capillary) to intrude the sample, for each pressure
- From the pressure versus intrusion data, the instrument generates volume and size distributions using the Washburn equation
Case Study

• Total of ~ 2000 HPMI Pc curves from ~ 50 wells (same field)

• Source files of various vintage (age) and measured in different laboratories

• Objectives:
 • Effectively load all available data into a single data base
 • Asses quality of data
 • Identify limitations / highlight suspect data
 • Provide preliminary insights for potential rock quality grouping (rock typing)
Data Preparation

- Recognition of available data – what’s reported?
- Patterns recognition – grouping identical input formats
- **7 different types** of Source Data Files were identified, all requiring different data loading algorithms
- Software to automate as much as possible data loading and QC was developed
Data Preparation

• Field, well
• Formation (if available)
• Sample Number
• Sample Depth
• Permeability *(measured or Parent Plug)*
• Porosity *(measured)*
• MICP sample He Grain Volume
• MICP sample He Pore Volume
• MICP sample Hg Immersed Bulk Volume
• MICP sample He Porosity *(He GV + Hg imm. BV)* *(reported or calculated)*
• Sample weight — if injection data provided in cc/g
• Mercury Injection Pressure
• Hg injection volume
 • Incremental Hg Injected *(cc/g)* or Cumulative Hg Injected *(cc/g)*
 or
 • Incremental Hg Injected *(cc)* or Cumulative Hg Injected *(cc)*
Quality System

1. Use data with confidence

2. Sample Suspect - use data with care

3. Reject Sample - unacceptable data or uncertainty

• Data Availability:
 • Porosity and permeability, MICP sample He Pore Volume, raw injection data (pressure and Hg volume), etc.

• Values:
 • MICP sample Pore Volume, MICP sample He PV vs. Hg PV, MICP sample Porosity vs. parent plug Porosity, MICP sample Grain Density vs. parent plug Grain Density, penetrometer size (if available)

• Curve Shape / Trends:
 • Pc vs. Saturation
 • Swi vs. Porosity, Permeability and RQI
 • J Leverett
 • Etc.
MICP Sample Poroperm

MICP samples coverage

Cut-off Values

Permeability cut-off applied <= 0.01 mD – actual values are potentially much lower

Inconsistencies between MICP and corresponding “sister” RCA sample poroperm data were identified

MICP sample vs. Parent Plug Poroperm link

Parent Plug porosity/permeability availability flagged as 1 (GREEN)

Parent Plug permeability availability flagged as 2 (AMBER) (2 samples)

Parent Plug porosity/permeability flagged as 2 (AMBER)
Importance of Reliable MICP Sample Poroperm Data

- K values for sister samples 2A and 2B very different:
 - typo
 - error in measurement
 - truly not the same rock quality

- Uncertainty in base data translates into any further use of MICP data, specially for modelling purposes
MICP Sample Poroperm

MICP and corresponding “sister” RCA sample porosity comparison

Diff. MICP & PP Porosity (p.u.)

Sample

Color by
Flag Val Par Plug Por vs MICP Samp Por (Hg imm BV&He
Equal to 1
Equal to 2
Equal to 3
(Empty)
All values
Horizontal Line:
Ideal Accept Diff Par Plug Por &MICP Samp Por (frac)
Max Accept Diff Par Plug Por &MICP Samp Por (frac)
Conformance Correction

Before Mercury Injection

 Mercury conforming to sample surface before invading “porous media”

Diagnose Tools

Conformance correction “checked” for each sample against “expected” porosity and permeability (compared to parent plug data when available). MICP Sample K from Swanson and porosity from Hg inf. (closure corrected+He GV)
Conformance Correction

What if injection data (raw data) is not available (only SHg vs. Pc curves reported)?
Conformance Correction

Lab vs. Independently Assessed MICP Conformance Corrections

<table>
<thead>
<tr>
<th>Lab Reported Sw (frac.)</th>
<th>Independently Assessed Sw (frac.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Well 3</td>
<td>Well 4</td>
</tr>
<tr>
<td>Well 5</td>
<td>Well 6</td>
</tr>
<tr>
<td>Well 7</td>
<td>Well 8</td>
</tr>
<tr>
<td>Well 9</td>
<td>Well 10</td>
</tr>
<tr>
<td>Well 11</td>
<td>Well 12</td>
</tr>
<tr>
<td>Well 13</td>
<td>Well 14</td>
</tr>
<tr>
<td>Well 15</td>
<td>Well 16</td>
</tr>
<tr>
<td>Well 17</td>
<td>Well 18</td>
</tr>
<tr>
<td>Well 19</td>
<td>Well 20</td>
</tr>
<tr>
<td>Well 21</td>
<td>Well 22</td>
</tr>
<tr>
<td>Well 23</td>
<td>Well 24</td>
</tr>
<tr>
<td>Well 25</td>
<td>Well 26</td>
</tr>
<tr>
<td>Well 27</td>
<td>Well 28</td>
</tr>
<tr>
<td>Well 29</td>
<td>Well 30</td>
</tr>
<tr>
<td>Well 31</td>
<td>Well 32</td>
</tr>
<tr>
<td>Well 33</td>
<td>Well 34</td>
</tr>
<tr>
<td>Well 35</td>
<td>Well 36</td>
</tr>
<tr>
<td>Well 37</td>
<td>Well 38</td>
</tr>
<tr>
<td>Well 39</td>
<td>Well 40</td>
</tr>
<tr>
<td>Well 41</td>
<td>Well 42</td>
</tr>
<tr>
<td>Well 43</td>
<td>Well 44</td>
</tr>
<tr>
<td>Well 45</td>
<td>Well 46</td>
</tr>
<tr>
<td>Well 47</td>
<td></td>
</tr>
</tbody>
</table>

NFES - Norwegian Formation Evaluation Society
Sample Size/Shape

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Vb (cc)</th>
<th>φ</th>
<th>PV (cc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPMI 1.5” x 2.5” plug</td>
<td>72</td>
<td>0.20</td>
<td>14.4</td>
</tr>
<tr>
<td>LPMI & HPMI max 1.0” x 1.0” plug</td>
<td>13</td>
<td>0.20</td>
<td>2.57</td>
</tr>
<tr>
<td>HPMI</td>
<td>5</td>
<td>0.20</td>
<td>1</td>
</tr>
</tbody>
</table>

- HPMI as large as possible (1” diameter x 1” length plugs) but still compatible with penetrometer capacity
- Idea is to minimise surface area to volume ratio of samples to minimise conformance corrections (the larger the sample, the better). This also requires samples to be preferable cylinders rather than trims (when possible)
- It is not possible to measure permeability directly in plug trims, therefore an estimate value needs to be assigned, which is subject to uncertainty
- Ideal “minimum” sample pore volume for this test is ~ 1 cc (accuracy of intrusion function of stem volume)

<table>
<thead>
<tr>
<th>Target Sample Pore Volume</th>
<th>Sample Size / Bulk Volume</th>
<th>Minimum Required Sample Porosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50 cc (minimum required)</td>
<td>1” dia. x 1” length / 13 cc</td>
<td>3.85 %</td>
</tr>
<tr>
<td>1.00 cc (ideal minimum)</td>
<td>1” dia. x 1” length / 13 cc</td>
<td>7.70 %</td>
</tr>
</tbody>
</table>
Sample Size

LPNI & HPNI max

HPNI typical

NFES - Norwegian Formation Evaluation Society
He PV vs. Hg PV

Mercury Injection
Some porous left behind (not 100% saturation)

Helium Injection
100% saturation (connected porous media)

Equal to 1
Horizontal Line:

Avg(Lab CC Hg PV/He PV rep.)

Well

NFES - Norwegian Formation Evaluation Society
Curve Shape, Pressure Steps and Equilibration

No stabilisation/Poor Pc selection-spacing

Pc points should logarithmically-spaced to avoid poor curve definition

Adequate stabilisation / Good Pc selection-spacing (smooth curve)

No stabilisation/Poor Data
 Acquisition strategy for pressure points selection (too few Pc points at high Pc)
Summary of Quality Flags

Summary of Overall QC:
- 9.5% of samples have been rejected (highlighted as 3 **(RED)**)
- The remaining 90.5% have been highlighted as 2 **(AMBER)**. These can be carried forward but are classified as uncertain
- None of the samples have been highlighted as 1 **(GREEN)**

Overall Flag Summary

<table>
<thead>
<tr>
<th>Overall Flag</th>
<th>Overall Data Availability Flag</th>
<th>Overall Values Flag</th>
<th>Overall Curve Shape Flag</th>
<th>% Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub-Total (% samples)</td>
<td>90.5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub-Total (% samples)</td>
<td>9.5</td>
<td></td>
</tr>
</tbody>
</table>
Permeability Prediction

Non QC MICP data produces the following Swanson type permeability correlation based on the independent calculation of Swanson Parameter \((S_b/P_c)^{m \text{ max}}\), per sample:

\[
K_a = 240 \cdot \left(\frac{S_b}{P_c} \right)_A^{1.38}
\]

Correlation coefficient = 0.787

QC MICP data produces the following Swanson type permeability correlation based on the independent calculation of Swanson Parameter \((S_b/P_c)^{m \text{ max}}\), per sample:

\[
K_a = 427 \cdot \left(\frac{S_b}{P_c} \right)_A^{1.64}
\]

Correlation coefficient = 0.836
Reservoir Rock Quality

- **R35:**
 - Pore apertures corresponding to a mercury (non-wetting phase) saturation of 35% (R35) were read for each one of the MICP curves (linear interpolation applied to find the exact 35% value)

Multivariable regression of the MICP data (R35, K and Phi) was used to derive a “Winland R35 type” equation, using exclusively measured MICP data from field under study:

\[
\log R35 = 0.5699 + 0.5783 (\log K_{\text{air}}) - 0.7796 (\log \phi)
\]

Multiple Regressions Statistics **Field based** “Winland R35” type curve:

- Multiple R: 0.969761525
- R Square: 0.94034845
- Adjusted R Square: 0.940437415
- Standard Error: 0.130320538
- Observations: 1342
Leverett J-Function

J function relationships effectively discriminated by R35 bins at normalized Swir
Thomeer Curve Fitting / Clustering

\[(1 - S_{\text{wet}}) = \frac{BV_{\text{men}}}{\phi} \times e^{-\frac{G}{\log\left(\frac{P_c}{P_d}\right)}}\]
Conclusions

- Automatic HPMI data loading and evaluation in house algorithms have proved to be an effective and efficient way of combining disparate data sets, that otherwise would have been difficult to evaluate efficiently (let alone typos from manual processing and evaluation!!)
- A thorough and systematic review and quality control analysis of the MICP database have rejected 9.5% of the samples
- Unfortunately, none of the remaining 90.5% of samples satisfy the rigorous green QC flag criteria due mainly to the lack of experimental data and supporting information to gain confidence on the results
- Although the “acceptable” database has some limitations, the MICP data do exhibit well-developed and consistent trends that can be used for permeability prediction and rock typing
- Saturation-height model implementation may be possible using R35 bins and RQI to help discriminate petrophysical rock types
- There appears to be sufficient differentiation between the MICP curves’ J and Thomeer parameters and rock properties discriminated by R35
- The key to optimisation of Sw-H modelling is the identification of the rock types (defined by R35 bins, for example) from logs in uncored intervals and wells
Thank you, Any Questions?